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Abstract: Interleukin-6 (IL-6) is a well-established, independent indicator of multiple distinct types of cardiovascular dis-
ease and all-cause mortality. In this review, we present current understanding of the multiple roles that IL-6 and its signal-
ing pathways through glycoprotein 130 (gp130) play in cardiovascular homeostasis. IL-6 is highly inducible in vascular 
tissues through the actions of the angiotensin II (Ang II) peptide, where it acts in a paracrine manner to signal through two 
distinct mechanisms, the first being a classic membrane receptor initiated pathway and the second, a trans-signaling path-
way, being able to induce responses even in tissues lacking the IL-6 receptor. Recent advances and new concepts in how 
its intracellular signaling pathways operate via the Janus kinase (JAK)-Signal Transducer and Activator of Transcription 
(STAT) are described. IL-6 has diverse actions in multiple cell types of cardiovascular importance, including endothelial 
cells, monocytes, platelets, hepatocytes and adipocytes. We discuss central roles of IL-6 in endothelial dysfunction, cellu-
lar inflammation by affecting monocyte activation/differentiation, cellular cytoprotective functions from reactive oxygen 
species (ROS) stress, modulation of pro-coagulant state, myocardial growth control, and its implications in metabolic con-
trol and insulin resistance. These multiple actions indicate that IL-6 is not merely a passive biomarker, but actively modu-
lates adaptive and pathological responses to cardiovascular stress.  

Summary: IL-6 is a multifunctional cytokine whose presence in the circulation is linked with diverse types of cardiovas-
cular disease and is an independent risk factor for atherosclerosis. In this review, we examine the mechanisms by which 
IL-6 signals and its myriad effects in cardiovascular tissues that modulate the manifestations of vascular inflammation. 
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INTRODUCTION 
 IL-6 is a multifunctional cytokine that has been widely 
implicated in cardiovascular disease. Produced by a wide 
spectrum of cell types in the cardiovascular system, IL-6 
secretion is upregulated in response to inflammation, angio-
tensin II (Ang II), oxidative stress and vascular injury [1-3]. 
Because of its ability to sense cardiovascular stress, IL-6 has 
become a marker of vascular inflammation, where its in-
crease in the circulation is epidemiologically associated with 
a variety of clinically significant outcomes. Although IL-6 is 
clinically considered to be a biomarker of cardiovascular 
disease, emerging evidence indicates that IL-6 signaling 
plays a central, significant biological role in cardiovascular 
regulation. In this review, we will discuss new studies which 
elucidate its signaling pathways, and implicate its actions in 
mediating systemic inflammation (hepatic acute phase induc-
tion and modification of thrombotic pathways), homeostatic 
functions (cellular cytoprotection from ROS stress), endothe-
lial dysfunction, cellular inflammation (monocyte activa-
tion), growth control (intimal proliferation and cardiac hy-
pertrophy), and metabolic control (insulin resistance). These 
multiple actions indicate that IL-6 is not merely a passive 
biomarker, but actively modulates responses to cardiovascu-
lar disease.  
IL-6 AND CARDIOVASCULAR DISEASE 
 Although it is outside the scope of this review to detail all 
potential roles of IL-6 (or its downstream product, C-reactive  
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protein (CRP)) as a cardiovascular biomarker in different 
cardiovascular diseases, it is important to emphasize that 
elevation of IL-6 is associated with diverse pathologies. In-
creased circulating IL-6 is associated with a number of car-
diac risk factors, including atherosclerotic disease, cardio-
myopathies, and metabolic syndromes. For example, in 
seminal observations emanating from the Physicians Health 
Study, baseline plasma concentration of IL-6 is associated 
with increasing risk of myocardial infarction (MI). Here, 
individuals with the highest quartile of IL-6 values have a 
2.3-fold increased relative risk of having an MI relative to 
those with the lowest IL-6 values [4]. Importantly, in this 
study the IL-6 association remained significant even after 
adjusting for conventional cardiovascular risk factors. In 
patients admitted for acute coronary syndromes, increases in 
circulating IL-6 in the first two days of hospitalization are 
positively correlated with risk of reinfarction and in-hospital 
complications [5]. In apparently healthy middle-aged men, 
multiple measures of blood pressure strongly correlate with 
circulating IL-6 levels [6]. In congestive heart failure, circu-
lating IL-6 inversely correlates with AHA functional classi-
fication, ejection fraction, and survival [7,8]. In studies de-
signed to identify plasma predictors of peripheral arterial 
disease (PAD), the downstream induced protein of IL-6, 
CRP, is strongly and independently associated with sympto-
matic PAD [9]. Additionally, in obesity, serum IL-6 levels 
are positively correlated with extent of obesity [10,11] and 
risk for subsequent development of overt diabetes [12]. To-
gether, these observations indicate that circulating IL-6 is a 
marker for common pathophysiologic processes underlying 
clinically significant cardiovascular disease.  
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CARDIOVASCULAR INDUCERS OF IL-6 

 IL-6 is highly inducible in response to cytokines (IL-1, 
TNFα), viral infection, and Ang II [13,14]. Because of its 
central role in mediating cardiovascular inflammation, the 
mechanisms by which Ang II activates IL-6 have been inten-
sively investigated. In smooth muscle cells and hepatocytes, 
Ang II activates IL-6 expression via the type 1 Ang II recep-
tor (AT1R) [3]. Studies by our group have shown the essen-
tial role of the NF-κB transcription factor in mediating in-
ducible IL-6 expression [13]. NF-κB is a cytoplasmic tran-
scription factor that has been implicated in cardiovascular 
inflammation and is known to be regulated by several dis-
tinct pathways that control its cytoplasmic-to-nuclear parti-
tioning [Reviewed in [15]]. Our recent work has shown that 
Ang II induces NF-κB via an entirely distinct mechanism- 
one that activates the latent transcriptional activity of the 
RelA transcriptional subunit, mediated by the Rho family of 
GTPases. This process culminates in enhancing phosphoryla-
tion in the RelA COOH transactivation domain at serine 
residue 536 and formation of a nuclear complex with the NF-
κB inducing kinase (NIK) [16]. IL-6 gene expression results 

when the activated phosphorylated form exchanges with 
inactive unphosphorylated RelA bound to the IL-6 promoter 
[13]. Recent studies from the Lucas laboratory have defined 
further key signaling intermediates of the Ang II signaling 
pathway converging on NF-κB [17]. This group has identi-
fied a requirement of three additional signaling molecules 
that form an activated membrane bound complex. These 
proteins include: (i) CARMA3 [caspase recruitment domain 
(CARD)], a tissue specific member of the membrane associ-
ated guanylate-kinase superfamily of scaffolding proteins, 
which serves to integrate the upstream signal of activated 
protein kinase C with downstream factors, (ii) Bcl10, an in-
termediate bridging factor; and (iii) MALT1, an effector 
protein that oligomerizes through interaction with Bcl10 
[17]. The interaction of the CARMA3/MALT1/Bcl10 com-
plex with the NF-κB signaling pathway is actively under 
investigation and should provide novel therapeutic targets to 
selectively disrupt Ang II-induced vascular inflammation 
without affecting pathways controlling adaptive immunity 
and cellular apoptosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). IL-6 induced classical and trans-signaling pathways. Shown is a schematic view of classical IL-6 signaling via the IL-6Rα recep-
tor and gp130 for a representative hepatocyte. IL-6Rα bound to the IL-6 ligand results in complex formation with gp130, activating tyrosine 
kinase activity, including and culminating in tyrosine phosphorylation of STAT3. The IL-6 trans-signaling pathway is diagrammed at top, 
using a representative endothelial cell. Circulating IL-6·IL-6Rα engages with gp130 expressed on cells, enabling activation of the IL-6 sig-
naling pathway in cells lacking IL-6Rα. See text for further details. 
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 Recent studies indicate that several tissues are affected by 
enhanced IL-6 associated with vascular inflammation. First, 
IL-6 has actions locally in the vessel wall. For example, IL-6 
production has been identified locally in coronary atheroscle-
rotic plaques [18], where it co-localizes with Ang II [18], as 
well as aortic atherosclerotic plaque in experimental rodents 
[2]. In Ang II-stimulated vessels, IL-6 is the most abundantly 
secreted cytokine detected. Here IL-6 is predominantly ex-
pressed by fibroblasts and activated macrophages in the ad-
ventitial layer of the proximal ascending aorta, with lesser 
amounts in the media and intimal layers [2]. Moreover, these 
studies demonstrated that the IL-6 signaling pathway was 
locally activated in both adventitial and endothelial layers 
[2]. These data indicate that Ang II activates a local IL-6 
signaling pathway in the aortic adventitia during very early 
phases of Ang II-induced atherosclerosis. 

MECHANISMS OF IL-6 SIGNALING 

Classical Membrane IL-6 Signaling 

 IL-6 is the prototype for one of the most pleiotropic cy-
tokine family in mammals, a family that includes IL-11, on-
costatin M (OSM), cardiotrophin-1 (CT-1), ciliary neurotro-
phic factor (CNTF), cardiotrophin-like cytokine (CLC), leu-
kemia inhibitory factor (LIF), and the recently identified IL-
27p28 [19-21]. This family contains structures with four 
long α-helices arranged in an up and down topology. IL-6 is 
a highly inducible cytokine secreted by several different cell 
types of cardiovascular relevance, including macrophages, 
lymphocytes, fibroblasts, endothelial cells and smooth mus-
cle cells [22-26]. Since IL-6 is the major hormonal mediator 
of the hepatic acute-phase reaction, mechanisms for IL-6 
signaling have been intensely studied. Currently we know 
that IL-6 activates target cells through a classical signaling 
pathway by binding cell surface IL-6 receptor α-subunits 
(IL-6Rα). 

 Molecular events in IL-6 signaling are initiated by bind-
ing to its receptor subunit IL-6Rα (which has no intrinsic 
kinase activity) with low affinity at the cell surface. The IL-
6·IL-6Rα complex then triggers ligand-mediated oligomeri-
zation with the ubiquitously expressed transmembrane gp130 
β-subunit, inducing gp130 homodimerization, and subse-
quent formation of a hexameric IL-6·IL-Rα·gp130 high-
affinity complex [27] (Fig. 1). Receptor ligation induces con-
formational changes in the cytoplasmic domains of gp130 
that bring Janus tyrosine kinases (JAKs) into close proxim-
ity. This molecular interaction results in trans-autophosphory-
lation of JAK1, a specific Janus kinase mediating IL-6 sig-
naling [21,28,29]. JAK1, in turn, phosphorylates gp130 on 
the docking sites for the signal transducer and activator of 
transcription (STAT); STAT isoforms -1 and -3 are then 
recruited, where they, too, become phosphorylated [21]. In 
addition to STAT activation, phosphorylation of gp130 on 
membrane proximal Tyr 759 residue is necessary and suffi-
cient for binding of SRC homology domain 2-containing 
tyrosine phosphatase 2 (SHP-2). SHP-2 is then phosphory-
lated, and by itself or together with another docking protein, 
Grb2 (growth factor receptor binding protein 2)-associated 
binder-1 (Gab1), and initiation of the Ras-ERK-MAPK cas-
cade occurs [19,21,28,30].  

 Of the signaling pathways downstream of the IL-
Rα·gp130 complex, STAT appears to play a major role. Tyr 
phosphorylated STATs-1 and -3 then form intermolecular 
associations, homo- and hetero-dimerize and translocate into 
the nucleus, where they bind specific DNA sequences (for 
example, acute phase or IL-6 response elements) and en-
hance transcription of target genes [21,29,31]. Analyses of 
complex formation with STAT3-dependent transcriptional 
enhancers have shown that STAT3 undergoes additional 
post-translational modifications that permits interactions 
with co-factors and co-activators [32] . 

 Recent studies have shown that STAT activities are 
modulated by their interactions with co-factors which posi-
tively or negatively regulate their activity. For example, upon 
entry into the nucleus, STAT3 associates with the p300/ 
CREB-binding protein (CBP) coactivator, an enhancer pro-
tein with intrinsic histone acetyltranferase (HAT) activity 
which is able to open chromatin structure, allowing other 
chromatin-modifying proteins to bind to DNA and activate 
transcription [33-35] (Fig. 2). The p300/CBP association 
requires both the NH2-terminal modulatory domain and the 
COOH-terminal transactivation domain of STAT3 [35,36]. 
Interestingly, STAT3 itself can also be acetylated by p300/ 
CBP at these two domains in response to IL-6. Acetylation 
on Lys 685 on its COOH-terminal region is critical for stable 
dimer formation and DNA-binding activity [36]. Studies 
from our laboratory first described two novel acetylation 
sites on the STAT3 NH2 terminus at Lys 49 and -87 that are 
required to stabilize the STAT3-p300/CBP complex through 
an additional interaction mediated by the modified STAT3 
NH2 terminus [37].  

 Further, we have recently discovered that STAT3 also 
regulates downstream gene expression by promoting tran-
scription elongation [38] (Fig. 2). This function is realized by 
the interaction between STAT3 and Positive Transcription 
Elongation Factor (PTEF-b) [38,39], a complex that phos-
phorylates Ser 2 on the heptad repeat of the COOH terminal 
domain of RNA polymerase II. COOH terminal phosphory-
lation permits Pol II to escape from transcription arrest and 
produce full length mRNA transcripts. Specifically, we found 
that activated nuclear STAT3 forms complexes with Cyclin-
Dependent Kinase 9 (CDK9), the major component of P-
TEFb, through both its NH2- and COOH-terminal domains. 
STAT3 binding then results in CDK9 being recruited to the 
promoter and downstream coding region of target genes. 
Importantly, induction of STAT3 target genes, such as γ-
FBG and p21waf1, are significantly reduced when CDK9 
kinase activity is inhibited [38], suggesting that it is possible 
to modulate cellular response induced by the IL-6-STAT3 
pathway by targeting CDK9 (Fig. 2). 

IL-6 Trans-Signaling  

 Recently it has been observed that the IL-6 tissue re-
sponse is significantly enhanced by a phenomenon termed 
“trans-signaling” [29,31] (Fig. 1). This mechanism is sug-
gested by the findings that the IL-6Rα also exists in a solu-
ble plasma form lacking the transmembrane domain, and that 
membrane association of the IL-6Rα subunit with gp130 is 
not required for signal initiation. Although soluble IL-6Rα  
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can be formed by alternative splicing of the receptor tran-
script, the chief means of its production is through ectodo-
main shedding from activated leukocytes by a disintegrin 
and metalloproteinases (ADAMs)-17 and -10 [26,29,40,41]. 
Although the membrane-associated IL-6Rα is specific to 
only certain cell-types, gp130 is ubiquitously expressed. 
Thus, the soluble IL-6-IL-6Rα complex can initiate IL-6 
signaling on any cell type. This of course, expands the reper-
toire of IL-6 responsive cells to virtually any cell in the body 
[29].  

 Also recently, it has been shown that IL-6 signaling in 
inflammatory disease utilizes classic or trans-signaling 
mechanisms to different degrees depending on specific cell-
types and pathologies. There also exists a little understood 
and naturally occurring soluble form of gp130 [29,31]; this 
protein can be used as a tool to differentiate classic cell sur-
face IL-6 signaling versus trans-signaling processes because 

soluble gp130 competitively inhibits trans-signaling without 
affecting membrane-bound signaling. In one study, admini-
stration of soluble recombinant gp130 in a rodent model 
demonstrated that Ang II-dependent hypertension required 
IL-6 trans-signaling, but concomitant vascular hypertrophy, 
down-regulation of the AT1R, and STAT3 activation were 
responses mediated through classic cell surface IL-6R signal-
ing [42]. In another elegant study, using a transgenic mouse 
overexpressing soluble gp130, effectively inhibiting IL-6 
trans-signaling [43], mononuclear cell-dominated inflamma-
tory processes were selectively inhibited, indicating that 
mononuclear inflammation relied on trans-signaling rather 
than classic signaling. Further, some inflammatory processes 
in these mice were blocked to the same degree as in an IL-6 
knockout mouse [43]. These approaches hold promise to 
elucidate these two mechanisms of IL-6 signaling in various 
pathological processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Discrete mechanisms for IL-6 induction of target genes. Top, coactivator recruitment mechanism. Tyrosine phosphorylated 
STAT3 binds to p300/CBP, resulting in STAT3 acetylation (Ac) on its NH2 terminus, and stabilization of the STAT3-p300/CBP complex. 
The acetylated-phosphorylated STAT3-p300/CBP complex then binds to high affinity IL-6 response elements in the promoters of target 
genes. This complex induces nucleosomal reorganization via the p300 histone acetylase activity, pre-initiation complex formation, recruiting 
TATA box binding protein, and enhanced RNA polymerase II activity. Bottom, transcriptional elongation. In a subset of IL-6 responsive 
promoters, RNA polymerase (Pol) II is engaged with the promoter producing incomplete transcripts. During the process of activation, tyro-
sine phosphorylated STAT3 complexes with the positive transcriptional elongation factor (PTEF-b), a complex containing CDK9. CDK9 
phosphorylates the COOH terminal domain of RNA polymerase II, enabling it to enter productive elongation mode, producing full length 
RNA transcripts. 
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Negative Regulation of IL-6 Signaling 

 Several negative feedback mechanisms provide temporal 
control of IL-6 signaling (Fig. 3). Ligand-induced internali-
zation and degradation of IL-6Rα and gp130 has been identi-
fied as a proximal mechanism for negating signaling [31]. 
IL-6 signaling is particularly sensitive to the downstream 
STAT3-dependent recruitment of suppressor of cytokine 
signaling 3 (SOCS3) to the gp130 Tyr 759 residue, a site 
near where JAK1 binds. SOCS3, itself inducible by STAT3, 
inhibits JAK1 activity through an unknown mechanism in-
volving its kinase inhibitor domain [21,44,45]. IL-6-gp130 
signaling is also attenuated by a phosphorylation-dependent 
induction of SHP-2 tyrosine phosphatase activity which 
dephosphorylate gp130 and JAKs [19,46]. Finally, SOCS 
proteins have been observed to recruit the elongin BC ubiq-
uitin-ligase complex to JAKs, and perhaps other components 
of the receptor complex, promoting ubiquitination and sub-
sequent proteosomal degradation [21,28,44]. Together these 
inhibitory mechanisms ensure transient IL-6 action.  

CELLULAR TARGETS AND ACTIONS OF IL-6 

Endothelial Cells 

 Enhanced ROS stress has been implicated in the patho-
genesis of atherosclerosis, hypertension, diabetes, aging and 
mechanical injury [47-52]. ROS are either oxygen-centered 
free radicals that include superoxide (O2

-), hydroxyl radicals 
(
. 
OH) and lipid (L) hydroperoxides (LOO), or reactive non-

radical compounds that include (H2O2), singlet oxygen (1O2), 
hypochlorous acid (HOCl) and chloramines (RNHCl) 
[53,54]. Under normal conditions the rate and magnitude of 
oxidant formation is balanced by the rate of oxidant elimina-
tion (an enzymatic activity influenced by IL-6). However, 
oxidant overproduction produces an imbalance that over-
whelms cellular antioxidant capacity, damaging cellular lip-
ids, membranes, proteins and DNA [55,56]. In addition, 

ROS can act as second messengers in an autocrine or para-
crine fashion to modulate endothelium-dependent vasore-
laxation, smooth muscle cell and endothelial cell growth and 
survival, and vascular remodeling. Each of these responses, 
when uncontrolled, contributes to vascular disease [57].  

 Because of these important activities of ROS, the mecha-
nisms by which they are generated have been extensively 
investigated [49,58]. Although macrophages are the major 
source of most ROS in the vessel wall, other cells, such as 
endothelial, smooth muscle and adventitial cells, produce 
ROS. Ang II and lipid (oxidized) LDL appear to be potent 
inducers of ROS [59]. In fact, Ang II infusion doubles O2

- 
production in aortic segments [49]. As a result, during the 
early stage of Ang II-induced atherosclerosis, the nonadhe-
sive function of endothelium which controls vasomotor tone, 
is disturbed. This process is mediated by Ang II–induced 
production of ROS, which results in the chemical inactiva-
tion of nitric oxide (NO), blunting its ability to vasodilate 
[60]. Among the variety of ROS generators in VSMCs are 
the mitochondrion and cellular enzymes, such as xanthine 
oxidase, cyclooxygenase, lipoxygenase, NO synthase, heme 
oxygenases, peroxidases, and the membrane-associated 
NAD(P)H oxidases, the latter having been shown to be of 
foremost physiological importance [58]. Inhibition of vascu-
lar ROS production through administration of superoxide 
dismutase increases acetylcholine-induced relaxation, sug-
gesting that ROS species themselves are responsible for the 

endothelial dysfunction [49]. In humans, it has been shown 
that treatment with selective inhibitors of AT1R reverses 
endothelial dysfunction in large arteries [28]. 

 Because IL-6 upregulates AT1R gene expression, it may 
lead to increased Ang II-mediated vasoconstriction and ROS 
production, and thereby play an important role in mediating 
endothelial dysfunction [61]. Consistent with this idea, it was 
observed that IL-6 deficiency protects against Ang II –

 

 

 

 

 

 

 

 

 

 

Fig. (3). Negative regulation of the JAK-STAT pathway. Shown are the major negative autoregulatory pathways of IL-6 induced STAT3 
signaling. IL-6 activated STAT3 both engages the suppressor of cytokine signaling (SOCS3) gene, inducing its expression and recruits SOC3 
to gp130 where it subsequently terminates STAT3 activation via JAK1 inactivation. SHP2 phosphatase activity also inactivates gp130 and 
JAKs. 
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induced endothelial dysfunction [62]. This IL-6 effect occurs 
locally within the vessel wall, independent of increases in 
blood pressure. Schrader et al. have reported that an O2

- 
scavenger restored endothelial responses in Ang II-treated 
arteries [62]. These findings further suggest that the effect of 
Ang II on endothelial function is attributable to O2

--mediated 
inactivation of NO [49,63]. Importantly, Ang II increases in 
ROS tone are absent in mice deficient in IL-6 or Nox2 genes. 
Together, these data suggest that NAD(P)H oxidase is a ma-
jor source of O2

- and a primary mediator of endothelial dys-
function. Thus, IL-6 may be a critical link in NAD(P)H-
derived, O2

.--mediated impairment of NO-induced vascular 
relaxation. Whether activation of NAD(P)H oxidase by Ang 
II occurs upstream or downstream of IL-6 expression re-
mains unclear. IL-6 expression may be an important link 
between Ang II–induced increases in NAD(P)H oxidase ac-
tivity, limiting the bioavailability of NO for normal vascular 
responses.  

 Interestingly, endothelium does not express transmem-
brane IL-6Rα and is unresponsive to IL-6; however, endo-
thelium can be activated by the IL-6 trans-signaling pathway 
discussed earlier [64]. IL-6 trans-signaling may play impor-
tant roles in other endothelial-dependent functions. For ex-
ample, in addition to vasodilation, the endothelium also 
plays a central role in regulating hemostasis, expressing anti-
coagulant and anti-adhesion molecules [65]. Both acute vas-
cular inflammation and chronic injury can cause inappropri-
ate activation of endothelium, converting it to a prothrom-
botic surface [66]. The actions of endothelial cells on hae-
mostasis are tightly regulated by a network of cytokines in 
autocrine or paracrine mechanisms [67]. Inflammatory stim-
uli, such as lipopolysaccharide (LPS) or cytokines, can acti-
vate endothelial cells, resulting in the synthesis of IL-1, IL-5, 
IL-6, IL-8, IL-11, IL-15; as well as colony-stimulating fac-
tors and chemokines. These secreted cytokines not only af-
fect the local microenvironment by inducing local inflamma-
tion and thrombosis, but also influence the systemic inflam-
matory responses and global hemostatic balance. Specific 
inducers of IL-6 production by vascular cells include IL-1 
[64], LPS [68], TNFα [69] and IL-4 [70]. Co-stimulation of 
endothelial cells with IL-4 and interferon-γ or IL-4 with IL-1 
further amplify the synthesis of IL-6 mRNA [70,71]. Interac-
tions between IL-6 and endothelial cells regulate recruitment 
of leukocytes and expression of chemokines. IL-6-/- mice 
show defective leukocyte accumulation to inflammatory sites, 
which is associated with decreased synthesis of chemokines 
by endothelial cells and reduced surface expression of adhe-
sion molecules [72]. Cultured endothelial cells (HUVEC) 
have been shown to produce MCP-1, -3, IL-8, as well as IL-
6. Upregulation of intercellular adhesion molecule-1 (ICAM-
1) also is observed in the presence of a trans-signaling com-
plex, IL-6·IL-R, at physiological concentrations [72]. The 
multiple inducers mentioned above promote interactions 
between endothelial cells and leukocytes, platelets or red 
blood cells, leading to further activation and damage of en-
dothelium in an autocrine amplification pathway.  

Monocytes 

 Macrophages play an important role in vascular inflam-
mation where they locally secrete cytokines, chemokines, 
and matrix metalloproteinases that promote further cellular 

infiltration and vascular remodeling. Vascular macrophages 
are derived from peripheral blood monocytes which locally 
differentiate into macrophages. This is a complex, multi-step 
process; importantly, IL-6 is a prominent cytokine that pro-
motes monocyte-to-macrophage differentiation.  

 IL-6 promotes macrophage differentiation, growth arrest 
and eventual apoptosis in vitro [73-79]. Experiments using 
IL-6 stimulation of myeloid leukemia cell lines have shown 
that IL-6 induces development of mature macrophages 
[73,74,80,81]. IL-6 stimulation causes these cells to increase 
in size, develop a large vacuolar cytoplasm, develop irregu-
larly shaped nuclei [74-76,82] and become surface adherent 
[77]. Functionally, these cells have increased esterase and 
phagocytic activities [74]. Surface expression of C3 com-
plement receptors, Fc receptors, and macrophage-colony 
stimulating factor (M-CSF) receptors along with F4/80, a 
marker for mature macrophages, also are up-regulated [76, 
77,83]. CD36, an oxidized lipid uptake receptor, has been 
shown to be induced by IL-6 in mouse peritoneal macro-
phages [84]. Furthermore, IL-6 induces expression of genes 
typical of macrophages, including the early response genes 
c-Jun, jun B, jun D, interferon-regulatory factor 1 (IRF1), 
JAK3, and Egr-1 [74,76,77,79]. However, expression levels 
of c-myc mRNA go down within hours of IL-6 stimulation, 
facilitating growth arrest and differentiation [74,77-79]. Bcl-
2 and cyclin D1 are down-regulated subsequently, increasing 
susceptibility to apoptosis [76,85]. IL-6 also regulates late 
response genes, including lysozyme and ferritin light-chain, 
genes that are normally induced during terminal macrophage 
differentiation [77,86]. Moreover, upon stimulation with IL-
6, monocytic cells up-regulate MCP-1 mRNA and protein, a 
chemokine more strongly expressed in macrophages than 
monocytes [87].  

 Additional work has shown that IL-6 favors monocyte-
to-macrophage differentiation rather than monocyte to den-
dritic cell differentiation [83,88,89]. Monocytes cultured in 
the presence of IL-4 and GM-CSF become CD1a+CD14- 
dendritic cells (DCs), but the addition of IL-6 alone causes 
CD1a-CD14+ macrophage differentiation, [88], where mor-
phological and functional characteristics of macrophages are 
seen [83,88]. Interestingly, this effect is not seen with the 
addition of other IL-6 family member cytokines, including 
IL-11, LIF, and OSM; monocytes become dendritic cells in 
their presence [88]. The favoring of macrophage differentia-
tion by IL-6 is also seen in monocyte and fibroblast co-
culture where the cell-cell interaction is thought to induce 
large amounts of IL-6 [83]. Even in the presence of IL-4 and 
GM-CSF in this system, the dendritic cell differentiation 
program is overridden by IL-6 signaling, and monocytes 
develop into macrophages [83]. This may be due to the ob-
servation that IL-6 up-regulates the number of functional M-
CSF receptors on moncytes, thereby increasing their sensi-
tivity to M-CSF [83].  

 gp130 and downstream signaling is required for IL-6-
induced macrophage differentiation [79]. Expression of 
gp130 mutations that are unable to activate STAT3 prevents 
the subsequent growth arrest and differentiation of M1 mye-
loid cells [79]. Furthermore, downstream STAT3 activation 
is required because dominant-negative forms of STAT3 
block differentiation [78,90]. Specifically, Minami et al. 
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showed that inhibiting STAT3 prevented induction of Fc 
receptors, ferritin light chain, and lysozyme; moreover, c-
myc was not down-regulated and the cells continued to pro-
liferate [78]. Likewise, over-expression of JAK3, which also 
is induced rapidly by IL-6, accelerates macrophage differen-
tiation [91]. Therefore, IL-6 activates the gp130-JAK/STAT 
signaling pathway leading to differentiation of monocytes.  

 Other transcription factors have been shown to modulate 
the IL-6-induced macrophage differentiation phenomenon. 
GATA-1, an erythroid nuclear protein that regulates globin 
gene expression, inhibits IL-6-induced macrophage differen-
tiation and apoptosis [76]. Overexpression of GATA-1 in M1 
cells leads to megakaryocytic or erythroid differentiation 
even in the presence of IL-6 and normal STAT3 signaling 
[76,92]. Tanaka et al. reported that expression of bcl-2 and 
cyclin D1 in these cells remain sustained, thereby disrupting 
the effect of IL-6 [76]. Thus, although the STAT3 pathway is 
necessary for IL-6-induced macrophage differentiation, al-
tered gene transcription induced by other pathways can 
modulate this process. In contrast to GATA-1, the zinc finger 
transcription factor Egr-1 is thought to be essential for 
macrophage differentiation [77,93]. Knocking down Egr-1 
with anti-sense oligonucleotides blocks M1, HL-60, and U-
937 myeloid cell lines from differentiating into morphologi-
cally mature macrophages while overexpression of Egr-1 
leads to activation of macrophage differentiation even with-
out the presence of IL-6 [77,93]. Increased Egr-1 activity, by 
itself, decreases growth rate and expression of c-myc, in-
creases Fc and C3 receptors, and elevates expression of jun 
B, ferritin light-chain, and lysozyme [77]. Simulation with 
IL-6 accelerates this process, resulting in increased cell ad-
herence to culture dishes and a doubling of the percentage of 
morphologically-mature macrophages as compared to Egr-1 
over-expressing cells alone [77]. However, the lack of Egr-1 
in mice does not impair macrophage differentiation and acti-
vation in vivo [94]. This might be due to the possibility that 
other members of the Egr-1 family (Egr-2,-3, and-4) have 
redundant activities [77].  

 Despite the wealth of in vitro data, there is little evidence 
that IL-6 plays a critical role in macrophage differentiation in 
vivo. Macrophages from IL-6 deficient and wild-type mice 
are similar, and there is no report on decreased numbers of 
mature macrophages in the IL-6 deficient mouse. Peritoneal 
macrophages from IL-6 knockout mice express levels of 
major histocompatibility complex (MHC) class II and F4/80 
comparable to wild-types, and they can be stimulated in vitro 
by LPS and IFN-γ to produce almost equal amounts of nitric 
oxide [95,96]. However, it is well known that IL-6 defi-
ciency results in impaired protection against bacterial infec-
tions in vivo, particularly to Listeria monocytogenes [96-99]. 
L. monocytogenes is a bacterium that primarily infects and 
proliferates intracellularly in macrophages; activation of 
macrophages is required to destroy the bacterium. Interest-
ingly, IL-6 deficient mice fail to control infections by L. 
monocytogenes [95-97]. Bluethmann et al. have proposed 
that this reduced anti-bacterial defense might be due to a 
defect in differentiation of macrophages in bone marrow 
[98]. In fact, the number of myeloid progenitors (CFU-GM) 
that give rise to granulocytic-monocyte lineage are reduced  
 

by half in the bone marrow of IL-6 deficient mice and are 
increased 4-fold in the spleen [100]. Although the total num-
ber of CFU-GM does not increase overall, the redistribution 
from bone marrow to the spleen may affect the differentia-
tion and/or function of the macrophages. Except for the de-
creased ability to fight infections, there are no other reported 
differences in macrophages obtained from IL-6 deficient 
mice. Thus, other factors that promote macrophage differen-
tiation may compensate for the lack of IL-6. IL-6 might be 
sufficient, but it does not seem to be necessary for macro-
phage differentiation in vivo.  

 Nevertheless, IL-6 probably contributes to macrophage 
differentiation in vascular inflammation where IL-6 levels 
are highly elevated in serum and cardiovascular tissues. In 
Ang II-infused mice, IL-6 secretion in aortic tissue is in-
creased 4-fold over basal levels [2]. The location of IL-6 
production and the site of activated STAT3 is predominantly 
in the adventitia, a location, coincidently, where the majority 
of macrophages reside [2,101]. This strong co-localization 
suggests that the monocytes recruited into the adventitia are 
most likely stimulated by the IL-6 present, along with other 
pro-macrophage factors, to become macrophages. Although 
not directly studying macrophages recruited to vascular tis-
sue, Keidar et al. reported that CD36 was up-regulated on 
peritoneal macrophages in association with increased IL-6 
serum levels in Ang II-infused mice [84]. CD36 was further 
shown to be directly inducible by IL-6 [84]. This study sug-
gests that IL-6 may promote macrophage differentiation in 
vascular tissue by up-regulating CD36 on recruited mono-
cytes. Clearly, more research is needed to elucidate the roles 
of IL-6 in differentiating monocytes to macrophages in vas-
cular tissue itself.  

Platelets  

 Platelets are not only essential for blood coagulation, but 
also for modulating inflammatory processes and contributing 
to wound healing by producing cytokines, chemokines, 
growth factor and other inflammatory mediators [102]. IL-6 
is known as an important regulator of megakaryocyte differ-
entiation and maturation in vitro [103,104], particularly 
when stimulated in conjunction with IL-1α and IL-3 [105]. 
Several in vivo studies provide evidence that IL-6 induces 
thrombocytosis. It has been shown that recombinant IL-6 and 
other IL-6 family members, including IL-11, OSM, and LIF, 
significantly enhance peripheral blood platelet count in ex-
perimental animals [106-109]. The relationship between IL-6 
and thrombocytosis also was observed in a correlative study 
in which 83 % of patients with secondary thrombocytosis 
had elevated serum IL-6 levels [110]. IL-6 not only aug-
ments platelet count, but also affects platelet function. IL-6-
treatment enhances platelet responsiveness to thrombin 
stimulation and increases P-selectin expression, a sensitive 
marker of platelet activation [111,112]. Also, incubation of 
platelets with IL-6 in vitro caused a dose-dependent en-
hancement of agonist induced maximum aggregation (AIMA) 
and secretion of thromboxane B2 (TXB2), indicating the 
activation of platelets [113,114]. Involvement of arachidonic 
acid metabolism is suggested since both AIMA and TXB2 
production were inhibited by indomethacin and dazoxiben 
[113]. 
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Myocardiocytes 

 Although the individual roles of the IL-6 family of cyto-
kines are not fully elucidated, the gp130-signaling pathway 
is known to play a key role in hypertrophic response of the 
myocardium to acute pressure overload. For example, ge-
netic modifications that result in tonic gp130 activation pro-
duce cardiovascular hypertrophy in mice [115]. Because 
organism-wide knock-out of gp130, STAT3, LIF or CT-1 is 
embryonically lethal with exhibition of multiple organ de-
fects, the cardiovascular role of these molecules has been 
difficult to discern. The development of cre-lox technology 
for tissue-specific gp130 knockout in ventricular muscle 
resulted in the surprising observation that gp130 signaling 
was not required for cardiac development or baseline indices 
of cardiac function [116]. However, when these animals 
were challenged in a model of acute pressure overload by 
aortic banding, instead of compensatory hypertrophy, gp130 
knockout mice rapidly showed signs of cardiac failure, in-
cluding reduced fractional systolic shortening and increased 
LV end diastolic pressure, followed later by development of 
dilated cardiomyopathy with increased cardiomyocyte apop-
tosis [116]. Other studies have also found that the JAK-
STAT3 pathway is activated in acute MI, where the greatest 
induction appears at the border between the infarct and vi-
able tissue, and inhibition of signaling produces increased 
myocardial apoptosis [117]. Together, these studies indicate 
that the gp130 signaling pathway mediates the interface be-
tween compensatory hypertrophy and cardiomyocyte apop-
tosis in response to pressure overload and ischemic insults. 
Because of the multiple redundant actions of the IL-
6/LIF/OSM/CT-1 cytokine family, the individual cytokines 
that mediate the early gp130 activation have not been defini-
tively determined.  

Hepatocytes  

 IL-6 is a key effector cytokine in hepatic physiology, 
including inducing hepatoprotection, mitogenesis, and the 
acute phase response [118,119]. The acute phase response 
has been extensively reviewed elsewhere [1,120] and will 
not be further discussed here. IL-6 has recently been shown 
to modulate hepatocyte survival. For example, the cell death-
inducing ligand, Fas, and toxin-mediated liver injury produce 
direct mitochondrial damage, ROS generation and subse-
quent hepatocyte necrosis (with a lesser degree of apoptosis). 
IL-6 signaling via STAT3 induces both antioxidant Ref-1 
and caspase inhibitors, including Bcl-2, FLIP, and Bcl-XL, 
to induce hepatoprotective state [121]. Separately, IL-6 also 
promotes liver regeneration, to restore liver mass after ne-
crotic or apoptotic injury has occurred. 

 Haga et al. has identified ROS as a component of Fas-
mediated liver injury and identified an endogenous antioxi-
dant, Ref-1, as a target of STAT3 [121]. Expression of Ref-1 
provided hepatoprotection, strongly suggesting that Ref-1 is 
a critical component of STAT3-mediated hepatoprotection. 
Ref-1, a dual-function protein upregulated by increases in 
ROS, is an endonuclease in the base excision repair pathway 
and a reducing agent that facilitates the DNA-binding prop-
erties of redox-sensitive transcription factors [122,123]. Ref-
1 is able to suppress ROS generation and hepatic apoptosis. 

 A recent study demonstrated that IL-6 also has a protec-
tive effect on Fas-mediated liver injury similar to the effect 
seen with STAT3 by upregulating c-FLIP, Bcl-2 and Bcl-xL 
[124]. The data of Haga et al. implicate that this effect of IL-
6 is mediated by STAT3 [121]. More work will be required 
to dissect the inter-relationships between Ref-1 and STAT3 
in IL-6 signaling and cellular survival.  

 Of the myriad hepatic proteins that IL-6 induces with 
cardiovascular activities, it is increasingly clear that IL-6 is a 
major modulator of the coagulation pathway [125-127], 
where its actions shift hemostatic balance to prothrombosis, 
thereby increasing the risk of cardiovascular diseases. IL-6 
promotes coagulation by a number of mechanisms. First, it 
increases the expression of procoagulant factors, such as 
fibrinogen (FBG), tissue factor (TF) and factor VIII [128-
130], and reduces the production of antithrombotic factors, 
such as antithrombin and protein S [112,131]. Second, as 
discussed earlier, IL-6 is involved in the activation of endo-
thelial cells and plays a central role in hemostasis [67,132]. 
Third, IL-6 contributes to thrombosis by increasing platelet 
numbers and regulating their functions [133].  

 Fibrinogen (FBG) is a large glycoprotein consisting of 
three pairs of non-identical polypeptides (Aα, Bβ, and γ) 
which are encoded by separate genes [134]. It is not only a 
rapid and sensitive marker of the acute phase response, but 
also an important mediator of hemostasis by participating in 
clot formation, platelet aggregation and clot retraction [135]. 
IL-6 can stimulate mammalian hepatocytes to produce FBG 
in a dose-dependent manner [128]. IL-6 response elements 
have been identified in the promoter regions of all human 
FBG Aα, Bβ, and γ genes [136-138]. Analysis of the 5’-
flanking region of human FBG Aα identified six potential 
IL-6 responsive sequences, among which a single sequence 
of CTGGGA localized from -122 to -127 bp is a functional 
element [136]. Also, a CCAAT/enhancer binding protein site 
(C/EBP, -134 to -749 bp) was found adjacent to the func-
tional IL-6 response element (IL-6RE), which might modu-
late and further increase the magnitude of IL-6 response 
[136]. In addition, a hepatocyte nuclear factor 1 (HNF-1) 
binding site, present from -47 to -59 bp, also was essential 
for the expression of the human fibrinogen Aα gene [136]. A 
similar finding was observed in the promoter of the human 
FBG Bβ gene. The identified DNA sequences essential for 
full IL-6-induced expression of fibrinogen Bβ included three 
distinct cis-acting DNA elements: an HNF-1 site at ~85 bp 
upstream of the transcription start site; a C/EBP binding site 
between nucleotides -124 and -133; and an IL-6 responsive 
element (IL-6RE) present just 4 bp upstream of the C/EBP 
consensus binding site [138-140]. The γ chain of fibrinogen 
(γ-FBG) plays a crucial role in fibrinogen function by induc-
ing platelet aggregation and leukocyte recruitment in in-
flammation [141,142], concentrating growth factors and cy-
tokines for wound healing [143-145], and mediating fibrin 
clot formation. Consequently, transcriptional control mecha-
nisms regulating inducible γ-FBG expression have been ex-
tensively investigated. These studies have shown that three 
IL-6 REs are found in the promoter region of the γ-FBG 
gene [137,146]. Although all of them contributed to the full 
promoter activity induced by IL-6, one site (site II) was the  
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major functional IL-6 responsive site [137,146]. Further 
studies using gel mobility shift assays have shown that the 
binding affinity of STAT3 to these three elements inversely 
correlated with their functional activities [147]. In contrast to 
Aα and Bβ-FBG genes, the promoter activity of γ-FBG was 
not affected by overexpression of C/EBPβ and C/EBPδ iso-
forms [137]. Recent findings from our lab indicate that γ-
FBG expression in hepatocytes also is regulated by the inter-
action between STAT3 and coactivators p300/CBP [36,37] 
and CDK9 [38]. Considering the key role of FBG in blood 
coagulation, IL-6 exerts its effects on hemostasis by regulat-
ing the levels of FBG in circulation.  

 Tissue factor (TF) is well known for its primary role in 
the initiation of the extrinsic pathway of coagulation. After 
vessel injury, TF forms a complex with factor VIIIa, which 
promotes the activation of factor V, leading to thrombin gen-
eration, fibrin deposition and finally clot formation [148]. A 
two-year follow-up study of 120 patients with congestive 
heart failure (CHF) revealed a strong correlation between TF 
and IL-6 levels, suggesting a close link between inflamma-
tion and thrombogenesis in CHF [149]. Also, patients with 
CHF and high IL-6 and TF levels have a poorer prognosis, 
raising the possibility that IL-6 contributes to the prothrom-
botic state in CHF through its affects on TF expression 
[149]. In human mononuclear leukocytes, recombinant IL-6 
rapidly induces TF mRNA and protein expression [150]. 
Also, IL-6 induces an increase in TF surface expression on 
monocytes, and the upregulation of TF is accompanied by an 
enhanced monocyte procoagulant activity (PCA) [150]. The 
actions of IL-6 on TF expression also may be indirectly me-
diated by CRP, an acute phase reactant that is markedly in-
duced by IL-6 [22]. Highly purified human CRP causes a 
significant increase of TF mRNA after 4 hours of stimulation 
and a 75-fold increase in the PCA of human peripheral blood 
monocular cells that is dependent on TF protein synthesis 
[129]. In a study of 106 outpatients with atrial fibrillation 
(AF), it was reported that AF patients have higher levels of 
IL-6, CRP, TF, and plasma viscosity compared with con-
trols, and significant correlations were reported between 
these inflammatory markers (IL-6, CRP) and prothrombotic 
plasma markers [151]. 

 Plasminogen activator inhibitor-1 (PAI-1), the major 
physiologic inhibitor of fibrinolysis, is also induced by pro-
inflammatory cytokines, including IL-1 and IL-6 [152,153], 
in the human hepatoma cell line, HepG2. Incubation of 
HepG2 cells with IL-1 caused a rapid and dramatic increase 
in PAI-1 mRNA expression in a dose-dependent manner. IL-
6 alone only had a modest effect on PAI-1 mRNA synthesis, 
however, when combined with IL-1, a significant accumula-
tion of PAI mRNA was observed [153]. A specific region (-
239 to -210 bp) of the PAI-1 promoter was shown to be nec-
essary for IL-1β-inducible expression and mediated the 
combined induction by IL-1β and IL-6 [154,155]. An in-
creased in the binding activity of C/EBPδ to PAI-1 promoter 
was induced by either IL-1β or IL-6 stimulation. Downregu-
lation of PAI-1 induction by siRNA against C/EBPδ con-
firmed the critical role of C/EBPδ in the inducible PAI-1 
expression [155]. Both IL-1β and IL-6 increase C/EBPδ 
mRNA expression [154,155]. Although C/EBPδ functions as 
a common mediator of PAI-1 expression in IL-1β and IL-6 

signaling, different upstream kinases were involved. Activa-
tion of C/EBPδ by IL-1β required all three of the mitogen-
activated protein kinase pathways (MAPK), while JAK sig-
naling contributed to IL-6-inducible expression of PAI-1 
[155]. Interestingly, the HMG-CoA reductase inhibitor 
(mevastatin) abrogated PAI-1 production induced by IL-1 
and IL-6, which was mediated by decreasing the levels of 
C/EBPδ mRNA and protein, as well as by inhibiting C/EBPδ 
binding to PAI-1 promoter [154,155]. These findings suggest 
that statins prevent vascular inflammation, at least in part, by 
inhibiting C/EBPδ-induced PAI-1 expression. 

 IL-6 also contributes to a pro-coagulant state by reducing 
synthesis of antithrombotic proteins. For example, IL-6 
negatively regulated the production of antithrombin, a potent 
inhibitor of coagulation, both in vivo and in vitro [131]. Pro-
tein S, a cofactor to Protein C in the inactivation of factors 
Va and VIIIa, is another IL-6-regulated anti-coagulant. The 
function of protein S is regulated by forming an inactive 
complex with complement protein C4b [156]. In a canine 
model, exogenous IL-6 significantly decreased levels of free 
protein S, which recovered to normal levels after the cyto-
kine exposure was discontinued [112].  

Adipocytes 

 The incidence of obesity and its co-morbidities has in-
creased dramatically worldwide, and is characterized by sys-
temic inflammation with an important, central role for IL-6. 
Visceral obesity is an independent risk factor for numerous 
chronic cardiovascular diseases, including atherosclerosis, 
arterial hypertension, renal glomerulopathies with proteinu-
ria, and diabetes. Diabetes is a major risk factor for prema-
ture cardiovascular, cerebrovascular, and peripheral vascular 
disease. Over the last decade, our understanding of fat tissue 
has changed dramatically from a simple energy storage or-
gan to an important endocrine organ modulating appetite, 
energy expenditure, insulin sensitivity, metabolism, endo-
crine and reproductive systems, inflammation, and immunity 
[86,157-161]. These effects are mediated by adipocytokines, 
including leptin, resistin, adiponectin, visfatin, as well as 
more classical cytokines, including TNF-α, MCP-1, and IL-
6. Since adipose tissue is a major source of IL-6, it is gener-
ally considered an adipokine. These adipokines act on im-
mune cells, leading to local and systemic inflammation, as 
well as on vascular cells, leading to obesity-related disorders 
associated with the metabolic syndrome (including hyperten-
sion, atherosclerosis, insulin resistance), diabetes, and cancer 
[86].  

 Serum IL-6 levels are positively correlated with extent of 
obesity based on body mass index [10,11]. Visceral adipo-
cytes harvested from severely obese, nondiabetic patients 
produce substantially more IL-6 than subcutaneous adipo-
cytes harvested from the same individual. This finding partly 
explains the relationship between visceral adipose fat depos-
its and the increased risk of cardiovascular disease in hu-
mans. Interestingly, visceral adipocytes account for only 10 
% of total adipose tissue production of IL-6 [162]. The re-
mainder is produced by non-adipose stromal cells, vascular 
endothelial cells, and monocyte/macrophages [162,163]. 
Nevertheless, adipose tissue contributes significantly to the 
serum pool of IL-6, and the observation that the venous 
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drainage of omental adipose tissue flows directly into the 
liver suggests an important metabolic impact, particularly on 
VLDL secretion and hypertriglyceridemia, which could im-
pact on atherosclerosis. In addition, it is well appreciated that 
IL-6 induces hepatic CRP production, which is an independ-
ent risk marker of cardiovascular disease [164,165]. It has 
been estimated that white adipose tissue, representing the 
major portion of fat tissue and the major site for energy stor-
age, contributes ~25 % of the circulating IL-6 in the absence 
of acute inflammation [159,165,166]. 

 IL-6 plasma levels also correlate with the development of 
the metabolic syndrome [167] and predict future risk for type 
2 diabetes [168,169]. It is important to note that these studies 
show an association with type 2 diabetes, not causality. It has 
been suggested that association between IL-6 and progres-
sion to type 2 diabetes may reflect an attempt to counter-
regulate the low-grade inflammation induced by other in-
flammatory mediators such as TNFα [170]. An increase in 
adipose tissue mass is associated with insulin resistance, 
hyperglycemia, dyslipidemia, and hypertension – all compo-
nents of the metabolic syndrome. IL-6 gene expression is 
related to adipose cell size [171], and IL-6 plasma concentra-
tion increases postprandially [172]. The role of IL-6 in insu-
lin resistance remains controversial [170,173]. Nevertheless, 
human and experimental animal studies do suggest that IL-6 
is involved in the development of insulin resistance in adi-
pose tissue, skeletal muscle, and particularly in hepatocytes 
[160,170,174]. While the mechanism remains unclear, cyto-
kines such as IL-6 and TNFα are able to decrease insulin 
action [175-177].  

 Perivascular adipose tissue increasingly is recognized as 
an important source of adipokines and proinflammatory cy-
tokines, including IL-6 [178-180], but its role in cardiovas-
cular disease remains unclear [181]. Perivascular adipose 
tissue plays a role in the regulation of arterial tone since it 
has been reported that adventitial adipose tissue attenuates 
responsiveness of rat aortic rings to phenylephrine and nore-
pinephrine [182]. The identity of this perivascular fat-
derived, vascular relaxing factor remains unknown, although 
leptin and/or adiponectin have been proposed. Nevertheless, 
these observations are intriguing and suggest that perivascu-
lar fat may have beneficial, protective effects under normal 
physiological conditions, but “perivascular adipose tissue 
dysfunction” may be deleterious under disease conditions 
such as obesity and diabetes [181]. 

SUMMARY 

 In summary, IL-6 is a major indicator of significant car-
diovascular disease of diverse etiologies and has emerged as 
a multi-faceted regulator of vascular tone and cellular in-
flammation. In this review, we have illustrated its complex 
mechanisms of signaling, mediated by classic membrane 
receptor or trans-signaling modalities, which act in concert to 
promote the targets and spectrum of IL-6 effects. Recent 
advances in understanding the molecular signaling pathway 
initiated by IL-6 through the STAT3 transcription factor has 
led to the discovery of novel coactivators required for 
STAT3 genomic effects that may be targets for vascular 
therapies. From this work it is clear that IL-6 has diverse 
actions including modulating endothelial-dependent vasore-

laxation, monocyte differentiation, platelet function, proco-
agulant state, myocardial hypertrophy, and effects on obesity 
and intermediary metabolism. These studies underscore the 
central relevance of the IL-6-gp130 signaling pathway in 
vascular pathologies.  
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