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DNA methylation signatures in peripheral
blood strongly predict all-cause mortality
Yan Zhang1, Rory Wilson2,3, Jonathan Heiss1, Lutz P. Breitling1, Kai-Uwe Saum1, Ben Schöttker1,4,

Bernd Holleczek5, Melanie Waldenberger2,3, Annette Peters2,3 & Hermann Brenner1,6,7

DNA methylation (DNAm) has been revealed to play a role in various diseases. Here we

performed epigenome-wide screening and validation to identify mortality-related DNAm

signatures in a general population-based cohort with up to 14 years follow-up. In the dis-

covery panel in a case-cohort approach, 11,063 CpGs reach genome-wide significance

(FDRo0.05). 58 CpGs, mapping to 38 well-known disease-related genes and 14 intergenic

regions, are confirmed in a validation panel. A mortality risk score based on ten selected

CpGs exhibits strong association with all-cause mortality, showing hazard ratios (95% CI) of

2.16 (1.10–4.24), 3.42 (1.81–6.46) and 7.36 (3.69–14.68), respectively, for participants with

scores of 1, 2–5 and 5þ compared with a score of 0. These associations are confirmed in an

independent cohort and are independent from the ‘epigenetic clock’. In conclusion, DNAm of

multiple disease-related genes are strongly linked to mortality outcomes. The DNAm-based

risk score might be informative for risk assessment and stratification.
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D
NA methylation (DNAm), as the most widely studied
form of epigenetic programming, has been revealed to
be modulated by lifestyle and environmental factors1,2

and to be involved in onset and progression of complex diseases,
including various forms of malignant diseases, cardiovascular
diseases (CVDs), metabolic diseases (for example, diabetes),
neuropsychiatric disorders and autoimmune disorders3–7.
Therefore, DNAm could plausibly be associated with the excess
mortality from specific diseases and consequently with all-cause
mortality. This was exemplified by the previous investigations on
smoking-associated DNAm changes and their relationship with
lung cancer incidence/mortality and mortality from any cause,
cancer and CVD8–10.

In addition, evidence has accumulated that the recently
established ‘epigenetic clock’ (also known as DNAm age) based
on age-associated DNAm changes, which presumably reflects
individuals’ biological age, is indicative for ageing-related
outcomes and longevity11–14. Following the first study reporting
an association of DNAm age with all-cause mortality by Marioni
et al.13, the association was consistently demonstrated in various
longitudinal studies15,16, for individual age-associated CpGs17

and also for newly identified age-associated CpGs18. On
the other hand, several epigenome-wide association studies
(EWASs) have pointed out that DNAm involved in ageing-
related phenotypes are largely distinct from the established age-
associated DNAm19–21.

To unravel the determinants of survival in the DNAm
landscape, we performed an epigenome-wide screening and
replication for mortality-related DNAm signatures in a general
population-based cohort of older adults. Here we show that
DNAm of 58 CpGs in baseline blood samples are associated with
mortality from any causes during 14 years of follow-up. A
mortality risk score based on ten selected CpGs strongly predicts
all-cause, CVD and cancer mortality, also in an independent
population-based cohort. The identified DNAm markers may
thus bear implications in risk assessment and stratification in
clinical practice.

Results
Study population. Table 1 presents the baseline characteristics of
the ESTHER (Epidemiologische Studie zu Chancen der Verhü-
tung, Früherkennung und optimierten Therapie chronischer
Erkrankungen in der älteren Bevölkerung) study population. Of
the 406 deaths in the case–cohort sample of the discovery panel,
90 were also included in the subcohort owing to random selection
of subcohort at baseline. The time between blood sample col-
lection and death ranged from 0.2 to 12.3 years (median (inter-
quartile range (IQR), 7.4 (4.5–9.6) years) for these 406
participants. The corresponding figures for the 231 deaths in the
validation panel were 0.2–13.8 years (range) and 8.6 (5.6–11.6)
years (median (IQR)). The characteristics of the participants in
the subcohort of the discovery panel are similar as those
of the participants in the validation panel, except that the pro-
portion of women was larger in the subcohort than in the vali-
dation cohort. In comparison with those two subgroups, the
group of deceased participants in the discovery panel featured
higher proportions of men, smokers, old (470 years) and inac-
tive participants, and participants with prevalence of hyperten-
sion, diabetes, CVD and cancer at baseline. The characteristics of
the KORA (Kooperative Gesundheitsforschung in der Region
Augsburg) study population are presented in Supplementary
Table 1. The average age was similar in KORA and ESTHER
participants (61 versus 62 years), but KORA participants
had a much broader age range (31–82 years) than ESTHER
participants (50–75 years).

Discovery and validation of mortality-related CpGs. In the
discovery phase, a total of 11,063 CpGs passed the genome-wide
significance threshold (false discovery rate (FDR) o0.05)
(Supplementary Fig. 1). Associations with all-cause mortality
were successfully replicated for 58 CpGs even after comprehen-
sive confounder adjustment in the validation phase. Manhattan
plots for the discovery and validation analyses are presented in
Supplementary Fig. 2. Table 2 shows the results for the 58 CpGs.
Methylation at the vast majority (49 of 58 CpGs) was inversely
associated with mortality, with hazard ratios (HRs) and 95%
confidence intervals (95% CIs) for a decrease in methylation by
1 s.d. ranging from 1.16 (1.04–1.28) to 1.95 (1.29–2.94). HRs
(95% CI) for the other 9 CpGs showing positive associations with
mortality ranged from 0.60 (0.47–0.77) to 0.83 (0.71–0.97) per
s.d. decrease in methylation. The 58 loci are located at 38 genes
and 14 intergenic regions across 19 chromosomes. In addition to
three CpGs within AHRR, ten clusters within the identified sites
were observed (Table 2), that is, 1p21.2 (2 CpGs), 2q37 (2 CpGs),
3q11/12 (2 CpGs), 6p21 (4 CpGs), 11p15 (3 CpGs), 11q13
(3 CpGs), 17q21 (2 CpGs), 17q25 (2 CpGs), 19p13 (3 CpGs) and
19q13 (7 CpGs). A literature search in PubMed for genes con-
taining the identified CpGs found evidence that these genes or
their methylation are involved in a variety of major diseases,
including diabetes (for example, SARS, SQLE, NFE2L3,
KCNQ1OT1 and SOCS3), CVD (for example, SARS, VCAM1,
PLCL2, UTS2D, AHRR, 6p21.33, SQLE, KCNQ1OT1, SEMA7A,
F2RL3, BCL3, PPP1R15A, PDE9A and MIR19A), various forms of
cancers (for example, SOCS3, SLC1A5, MIR19A, MIR10A, CALR,
ERCC1, BCL3, SQLE, RARA, LAPTM5, INPP5A, CSGALNACT1,
KCNQ1OT1, CDC42BPB, PDE9A and MKL1), neuropsychiatric
disorders (FOSL2, ATL3, SHANK2 and PPP1R15A) and HIV
infection (for example, GPR15 and MIR10A) (Table 2 and
Supplementary Table 2). Several of those genes, such as SQLE,
KCNQ1OT1 and SOCS3, have been suggested to play roles in
multiple types of diseases. Means and s.d. of the 58 CpGs at
baseline among deceased participants and survivors are illustrated
in Fig. 1.

Associations of risk factors with mortality-related CpGs. In the
analyses of associations between the 58 CpGs and the covariates,
differences in methylation levels with respect to age and sex were
observed for 23 and 25 CpGs, respectively (Supplementary
Table 3). However, none of the 58 CpGs overlapped with pre-
viously identified ageing-related sites11,12,18,22,23. Forty-eight of
the 58 CpGs were differentially methylated according to smoking
exposure and 22 of the 48 CpGs had also been found to be
associated with smoking by previous EWASs2,24 (CpGs displayed
in bold in Table 2). Five of the 48 smoking-associated CpGs and
cg24397007 in FOSL2 were also associated with alcohol
consumption (Supplementary Table 3). Four of the 48
smoking-associated CpGs and cg08362785 in MKL1 were also
associated with prevalent diabetes; of these 5 sites, cg18181703 in
SOCS3 was also recently identified to be associated with type 2
diabetes (T2D)5,25 and cg23190089 is located at SLC22A18AS, a
locus near to known methylation-regulated genes implicated in
T2D26,27. In addition, 4 of the 48 smoking-associated CpGs,
including 2 diabetes-associated sites (cg18181703 in SOCS3 and
cg26470501 in BLC3), were also associated with prevalent cancer.
An illustration of the 48 CpGs is presented in Supplementary
Fig. 3.

Mortality risk score and validation. Ten CpGs (cg01612140,
cg05575921, cg06126421, cg08362785, cg10321156, cg14975410,
cg19572487, cg23665802, cg24704287 and cg25983901) were
selected by least absolute shrinkage and selection operator
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(LASSO) regression. Preliminary analyses in ESTHER samples
showed that Z40% deaths occurred among participants with
methylation levels in the highest quartile of cg08362785 (hyper-
methylated among deaths) or in the first quartile of the other 9
CpGs (demethylated among deaths) (Supplementary Fig. 4a). We
therefore used the fourth quartile value of cg08362785 and first
quartile values of other nine CpGs as the cutoff points, to define
aberrant methylation for each CpG (the exact cutoff points are
listed in Supplementary Table 4). Participants with aberrant
methylation at 1–10 CpGs had a mortality score of 1–10,
respectively, and participants without aberrant methylation at any
of the 10 CpGs had score of 0. Table 3 shows the associations of
score with all-cause mortality. Compared with participants with a
score of 0, those who had a score of 1, 2–5 and 5þ had 2-, 3- and
7-fold risk of dying, controlling for all the potential confounding
factors. Analyses restricted to only older participants (Z60 years)
yielded essentially the same risk estimates, for example, HRs (95%
CI) were 2.14 (1.02–4.47), 3.38 (1.68–6.80) and 7.44 (3.50–15.84),
respectively, for a score of 1, 2–5 and 5þ versus score¼ 0.
Similar patterns of distribution of deceased were also observed in
KORA participants (Supplementary Fig. 4b). Using the cutoff
points from the ESTHER cohort defining aberrant methylation of
ten CpGs (Supplementary Table 4), replicated analyses in the
KORA cohort showed consistent patterns and similar risk esti-
mates (Table 3). Crude HRs (95% CI) for participants with score
of 1, 2–5 and 5þ were 1.21 (0.37–3.97), 6.42 (2.55–16.18) and

19.29 (5.58–66.63), respectively, compared with score¼ 0. In the
fully adjusted model, three- and six-fold increases in mortality
persisted for score levels of 2–5 and 5þ , respectively. Using
cutoff points (quartiles) of KORA itself defining aberrant
methylation of the ten CpGs to build the mortality score, risk
estimates were larger than those derived from using ESTHER’s
cutoff points. For example, the HR (95% CI) in the fully adjusted
model was 7.41 (1.61–34.07) for participants with score of 5þ . In
addition, a continuous risk score was computed through linear
combination of LASSO regression coefficient weighted methyla-
tion values of the ten CpGs (the combination formula is pre-
sented in Supplementary Fig. 1). A similar trend that mortality
monotonously increased with increasing continuous risk score
was observed in both the ESTHER (risk score ranged from � 3.92
to � 0.72; median (IQR), � 2.70 (� 2.98 to � 2.35)) and the
KORA cohorts (risk score ranged from � 4.40 to � 1.51; median
(IQR), � 3.15 (� 3.41 to � 2.86)). Figure 2 shows the corre-
sponding dose–response relationships derived from restricted
cubic spline regression with adjustment for all the covariates
again28.

Sex-specific analyses indicated the associations with all-cause
mortality to be stronger among women than among men in
both cohorts (Supplementary Table 5). Table 4 shows that the
associations of score with CVD mortality were stronger than with
cancer mortality in both cohorts. The corresponding survival
curves in the ESTHER cohort are presented in Fig. 3. Similar

Table 1 | Characteristics of study population at baseline.

Characteristics Discovery panel N (%) Validation panel N (%)

All deaths (n¼406) Subcohort (n¼ 548)* Cohort (n¼ 1,000)

Sex
Male 224 (55.2) 212 (38.7) 500 (50.0)
Female 182 (44.8) 336 (61.3) 500 (50.0)

Age (years)
50–60 84 (20.7) 179 (32.7) 339 (33.9)
60–64 97 (23.9) 159 (29.0) 289 (28.9)
65–69 113 (27.8) 127 (23.2) 226 (22.6)
70–75 112 (27.6) 83 (15.1) 146 (14.6)

Smoking statusw

Never smoker 155 (39.6) 251 (47.3) 469 (48.0)
Former smoker 136 (34.8) 180 (33.9) 323 (33.0)
Current smoker 100 (25.6) 100 (18.8) 186 (19.0)

Body mass index (kg m� 2)z

Underweight (o18.5) 5 (1.2) 1 (0.2) 8 (0.8)
Normal weight (18.5 to o25.0) 117 (28.9) 166 (30.3) 243 (24.4)
Overweight (25.0 to o30.0) 173 (42.7) 235 (42.9) 483 (48.5)
Obesity (Z30.0) 110 (27.2) 146 (26.6) 263 (26.4)

Physical activityy

Inactive 108 (26.7) 114 (20.9) 203 (20.3)
Low 205 (50.6) 268 (49.1) 438 (43.8)
Medium/high 92 (22.7) 164 (30.0) 358 (35.8)

Prevalence of major diseases
Hypertension 278 (68.5) 308 (56.2) 589 (58.9)
Diabetes|| 108 (26.6) 95 (17.4) 162 (16.2)
CVD|| 120 (29.6) 97 (17.7) 182 (18.2)
Cancer 57 (14.0) 27 (4.9) 66 (6.6)

CVD, cardiovascular disease.
*The subcohort included 90 deaths due to random selection at baseline irrespective of death status during follow-up.
wData missing for 27 and 22 subjects, respectively, in discovery and validation panels.
zData missing for one and three subjects, respectively, in discovery and validation panels.
yData missing for three and one subjects, respectively, in discovery and validation panels.
||Data missing for one subject in both discovery and validation panels.
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Table 2 | Association of 58 CpGs with all-cause mortality in the validation panel.

CpG site HR (95% CI)* FDR Chr position (GRCh37/hg19) Gene name Gene-related major diseasesw

cg03725309 1.34 (1.10–1.62) 0.0450 1p13.3 (chr1:109757585) SARS T2D (M); coronary artery disease
cg25763716 1.29 (1.02–1.63) 0.0486 1p21.2 (chr1:101184304) VCAM1 atherosclerosis; MI; tumour invasion
cg13854219 1.51 (1.05–2.17) 0.0399 1p21.2 (chr1:101757037)
cg25189904 1.18 (1.02–1.38) 0.0450 1p31.3 (chr1:68299493) GNG12 Endometrial cancer
cg15459165 0.60(0.47–0.77) 0.0035 1p35.2 (chr1:31223850) LAPTM5 Lung cancer (M); NB (M); multiple myeloma (M)
cg19266329 1.33 (1.14–1.55) 0.0179 1q21.1 (chr1:145456128)
cg24397007 1.28 (1.08–1.53) 0.0483 2p23.2 (chr2:28619095) FOSL2 Parkinson’s disease (M); breast cancer
cg23079012 1.16 (1.04–1.28) 0.0008 2p25.1 (chr2:8343711)
cg27241845 1.23 (1.06–1.44) 0.0222 2q37.1 (chr2:233250371)
cg06905155 1.20 (1.05–1.36) 0.0450 2q37.3 (chr2:240723946)
cg16503724 0.77 (0.64–0.94) 0.0484 3p24.3 (chr3:17130667) PLCL2 Renal cell carcinoma (M); MI; systemic sclerosis
cg19859270 1.32 (1.13–1.54) 0.0001 3q11.2 (chr3:98251295) GPR15 HIV
cg02657160 1.22 (1.07–1.38) 0.0084 3q12.1 (chr3:98311063) CPOX
cg14975410 1.20 (1.04–1.38) 0.0372 3q26.31 (chr3:171180070)
cg14855367 1.23 (1.08–1.40) 0.0463 3q28 (chr3:191048309) UTS2D Coronary artery disease
cg05575921 1.51 (1.25–1.84) 4.25E�07 5p15.33 (chr5:373378) AHRR Lung cancer (M); atherosclerosis (M)

CVD/cancer death (M)
cg14817490 1.19 (1.01–1.42) 0.0260 5p15.33 (chr5:392920) AHRR
cg21161138 1.23 (1.05–1.44) 3.07E-05 5p15.33 (chr5:399361) AHRR
cg12513616 1.17 (1.01–1.36) 0.0280 5q35.3 (chr5:177370977)
cg20732076 1.25 (1.05–1.50) 0.0217 6p21.1 (chr6:42335232) TRERF1 Breast cancer
cg25285720 1.25 (1.06–1.46) 0.0488 6p21.32 (chr6:32919434) HLA-DMA Ovarian cancer (M)
cg06126421 1.33 (1.10–1.60) 0.0008 6p21.33 (chr6:30720081) Lung cancer (M); CVD/cancer death (M)
cg15342087 1.17 (1.01–1.36) 0.0450 6p21.33 (chr6:30720210)
cg01612140 1.40 (1.14–1.72) 0.0244 6q14.1 (chr6:78166437)
cg25983901 1.19 (1.02–1.40) 0.0450 7p12.3 (chr7:46972700)
cg12510708 1.33 (1.06–1.67) 0.0241 7p15.2 (chr7:26193806) NFE2L3 T2D (M); breast cancer (M)
cg26286961 1.27 (1.10–1.47) 0.0260 8p21.3 (chr8:19460209) CSGALNACT1 FV-PTC; multiple myeloma
cg00285394 1.20 (1.05–1.36) 0.0217 8q24.13 (chr8:126011954) SQLE T2D/CVD (M); breast cancer (M); lung/prostate cancer
cg01140244 0.69 (0.54–0.89) 0.0450 10q26.3 (chr10:134498960) INPP5A Brain tumour; cutaneous squamous cell carcinoma
cg23190089 1.40 (1.08–1.82) 0.0450 11p15.4 (chr11:2920209) SLC22A18AS Breast cancer(M)
cg07123182 1.26 (1.11–1.44) 0.0003 11p15.5 (chr11:2722391) KCNQ1OT1 T2D (M); CRC (M); MI; breast cancer
cg26963277 1.31 (1.14–1.49) 3.07E�05 11p15.5 (chr11:2722408) KCNQ1OT1
cg18550212 1.57 (1.22–2.01) 0.0217 11q13.1 (chr11:63435428) ATL3 Neuropathy
cg10321156 1.20 (1.02–1.42) 0.0450 11q13.1 (chr11:63687223)
cg25193885 0.78 (0.65–0.93) 0.0100 11q13.3 (chr11:70328867) SHANK2 Prostate cancer (M); neuropsychiatric disorders
cg07986378 1.27 (1.03–1.57) 0.0483 12p13.2 (chr12:11898285) ETV6 Haematopoiesis and malignant transformation
cg23665802 1.39 (1.13–1.71) 0.0122 13q31.3 (chr13:92002338) MIR19A CVD; lung/gastric/breast/bladder/cervical cancer/CRC/

HCC
cg04987734 0.81 (0.70–0.94) 0.0266 14q32.32 (chr14:103415874) CDC42BPB Tumour cell invasion, for example, CRC (M); breast cancer
cg19459791 0.83 (0.71–0.97) 0.0483 15q22.31 (chr15:65363023)
cg00310412 1.26 (1.07–1.47) 0.0241 15q24.1 (chr15:74724919) SEMA7A Multiple sclerosis; lung/liver fibrosis
cg26709988 1.95 (1.29–2.94) 0.0092 16q24.1 (chr16:84860919) CRISPLD2
cg23842572 0.75 (0.62–0.91) 0.0194 17p11.2 (chr17:17030253) MPRIP Cancer cell invasion
cg19572487 1.26 (1.07–1.49) 0.0003 17q21.2 (chr17:38476025) RARA Breast cancer (M); hepatocellular/thyroid carcinomas (M)
cg01572694 1.36 (1.12–1.67) 0.0311 17q21.32 (chr17:46657555) MIR10A Lung/gastric/breast/colon/pancreatic/brain cancer/HCC;

HIV
cg08546016 1.39 (1.13–1.70) 0.0372 17q25.1 (chr17:72776239) TMEM104
cg18181703 1.24 (1.07–1.44) 0.0214 17q25.3 (chr17:76354622) SOCS3 T2D (M); lung/pancreatic/cervical/endometrial/prostate

cancer/HNSCC/HCC/CRC/melanoma/glioblastoma/
leukaemia (M)

cg03636183 1.27 (1.06–1.51) 0.0003 19p13.11 (chr19:17000586) F2RL3 Lung cancer (M); CVD/cancer death (M)
cg24704287 1.31 (1.06–1.61) 0.0329 19p13.13 (chr19:13951482)
cg11341610 1.29 (1.04–1.59) 0.0421 19p13.2 (chr19:13050932) CALR Lung/gastric/pancreatic/prostate/ovarian cancers/NB
cg14085840 1.45 (1.10–1.91) 0.0486 19q13.2 (chr19:40939429)
cg26470501 1.20 (1.04–1.39) 0.0351 19q13.32 (chr19:45252955) BCL3 CVD; lung/breast/prostate cancer/CRC
cg05492306 1.39 (1.07–1.80) 0.0217 19q13.32 (chr19:45927594) ERCC1 Lung/breast cancer(M); HNSCC/gastric cancer
cg25607249 1.41 (1.10–1.81) 0.0345 19q13.32 (chr19:47288040) SLC1A5 T2D (M); lung/pancreatic/breast/prostate cancer/CRC/

NB/melanoma/renal cell carcinoma
cg01406381 1.52 (1.19–1.95) 0.0054 19q13.32 (chr19:47288263) SLC1A5
cg07626482 1.19 (1.03–1.38) 0.0463 19q13.32 (chr19:47289503) SLC1A5
cg03707168 1.29 (1.02–1.63) 0.0311 19q13.33 (chr19:49379127) PPP1R15A Neurological diseases; myocardial ischaemia
cg25491402 0.65 (0.47–0.90) 0.0496 21q22.3 (chr21:44101491) PDE9A Lung cancer (M); CVD; breast cancer
cg08362785 0.63 (0.51–0.78) 0.0003 22q13.1 (chr22:40814879) MKL1 Lung/breast cancer(M); lung/liver fibrosis (M)

CI, confidence interval; CVD, cardiovascular disease; FDR, false discovery rate; FV-PTC, follicular variant of papillary thyroid carcinoma; HCC, hepatocellular carcinoma; HIV, human immunodeficiency
virus; HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; MI, myocardial infarction; NB, neuroblastoma; T2D, type 2 diabetes.
Bold printed CpGs (n¼ 22) are sites identified to be associated with smoking in both the current and previous epigenome-wide association studies. Underscored CpGs (n¼ 10) were selected to develop
the mortality risk score. Bold printed ‘Chr position’ indicates clusters of identified CpGs.
*HRs for a decrease in methylation by 1 s.d.; model adjusted for age, sex, smoking status, body mass index, physical activity, systolic blood pressure, total cholesterol, hypertension and prevalent
cardiovascular disease, diabetes and cancer at baseline.
wM refers to diseases, which have been reported to be related to methylation of the gene; detailed descriptions of gene function and relevant diseases are listed in Supplementary Table 1.
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Figure 1 | Methylation levels of 58 CpGs among deceased (N¼ 231) and survivors (N¼ 769) in the validation panel of the ESTHER cohort. (a) Mean

and s.d. (error bar) of 22 mortality-related CpGs (also discovered to be associated with smoking in both current and previous studies) by vital status;

(b) mean and s.d. (error bar) of 26 mortality-related CpGs (also discovered to be associated with smoking in the current study) by vital status; (c) mean

and s.d. (error bar) of other 10 mortality-related CpGs by vital status.
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survival curves were also obtained in the KORA cohort
(Supplementary Fig. 5).

Table 5 presents the associations of score with all-cause and
cause-specific mortality in the ESTHER cohort under considera-
tion of the epigenetic age acceleration (determined by the
algorithm of Hannum et al.11). The risk estimates of score for
all three mortality outcomes were only very slightly attenuated by
adjustment for the epigenetic age acceleration. On the contrary,
HRs (95% CI) per 5 years of age acceleration dropped from 1.27
(1.10–1.46), 1.25 (0.98–1.59) and 1.34 (1.05–1.71), respectively,
for all-cause, cancer and CVD mortality in the age- and sex-
adjusted model to 1.08 (0.92–1.27), 1.15 (0.88–1.51) and 1.12
(0.85–1.48) in the full model. Similar results for the epigenetic age
acceleration determined by the algorithm of Horvath et al.12 are
presented in Supplementary Table 6.

Discussion
In this EWAS and subsequent validation based on approximately
1,900 older adults with up to 14 years of follow-up, we identified
blood DNAm of 58 CpGs across 19 chromosomes to be
associated with all-cause mortality. Although there is evidence
that genes containing the identified CpGs are related to various
types of common diseases, our study was the first to link DNAm
of the vast majority of these genes to mortality in the general
population. We additionally demonstrated that a risk score based
on DNAm of ten identified CpGs was a very strong predictor for
all-cause, CVD and cancer mortality, and we confirmed this
finding in an independent cohort study. None of the newly
identified CpGs overlapped with previously established ageing-
related CpGs and the strong associations of score with mortality
were also independent from the epigenetic clock.

Of the 58 identified CpGs, the top 1 locus showing the most
significant association with mortality was cg05575921 in AHRR,
followed by cg21161138 in AHRR, cg26963277 in KCNQ1OT1,
cg19859270 in GPR15, cg03636183 in F2RL3, cg19572487 in
RARA and cg06126421 in 6p21.33. All these CpGs (except
cg26963277 in KCNQ1OT1) were also the top signals in previous
EWASs on smoking2. In addition to the 22 CpGs identified to be
associated with smoking in previous EWASs2,24, another 26 of the
58 CpGs were also smoking-associated in the current study.
Furthermore, even though a few other CpGs were found to be
associated with alcohol consumption, diabetes or cancer, such as

Table 3 | Association of the risk score with all-cause mortality in the ESTHER and KORA study.

Study Mortality score* Ntotal Cases PY IRw HR (95% CI)

Model 1z Model 2y Model 3||

ESTHER study 0 199 14 2690.69 0.52 Ref. Ref. Ref.
1 242 41 3144.50 1.30 2.55 (1.39–4.68) 2.04 (1.11–3.75) 2.16 (1.10–4.24)

2–5 426 105 5300.86 1.98 3.93 (2.25–6.86) 3.18 (1.81–5.59) 3.42 (1.81–6.46)
45 131 70 1348.99 5.19 10.89 (6.13–19.35) 7.64 (4.21–13.85) 7.36 (3.69–14.68)

KORA study 0 487 5 2163.01 0.23 Ref. Ref. Ref.
1 490 6 2147.91 0.28 1.21 (0.37–3.97) 0.93 (0.28–3.05) 0.71 (0.20–2.46)

2–5 722 45 3070.1 1.47 6.42 (2.55–16.18) 3.95 (1.53–10.19) 3.19 (1.22–8.35)
45 28 5 114.32 4.37 19.29 (5.58–66.63) 10.95 (3.09–38.84) 5.93 (1.49–23.69)

BMI, body mass index; CI, confidence interval; HR, hazard ratio; IR, incidence rate; PY, person-years; Ref., reference category.
*Score was based on methylation of 10 CpGs (cg01612140, cg05575921, cg06126421, cg08362785, cg10321156, cg14975410, cg19572487, cg23665802, cg24704287 and cg25983901) using their
respective first quartile values (cg08362785: using its highest quartile) among the ESTHER participants as the cutoff points to define aberrant methylation. Score 0–10 refer to simultaneously aberrant
methylation at 0–10 CpGs.
wIncidence rate per 100 person-years.
zModel 1: without adjustment.
yModel 2: adjusted for chronological age and sex.
||Model 3: similar to model 2, additionally adjusted for smoking status, BMI, physical activity, alcohol consumption, systolic blood pressure, total cholesterol, hypertension and prevalent cardiovascular
disease, diabetes and cancer at baseline.
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cg18181703 in SOCS3 and cg26470501 in BCL3, most of them
also showed associations with smoking exposure in our analyses
(Supplementary Fig. 3). These findings suggest that tobacco
smoking is the strongest factor leaving imprints on DNAm such
that smoking rather than other common health risk factors
accounts for the major burden of morbidity and mortality
involving epigenetic programming. Regardless of the underlying
mechanisms which remain to be elucidated in further research,
it appears worthwhile pointing out that prevention of or
intervention on smoking-related DNAm changes may provide
major improvement in premature death prevention, given the
reversibility of smoking-induced methylomic aberrations29,30.

The current study highlighted several genes or genetic regions
as attractive targets for further investigation. The chromosome
region 19q13.3 harbours six mortality-related CpGs mapped to
BCL3, ERCC1, SLC1A5 and PPP1R15A. Although ERCC1
methylation has been previously reported in lung and breast
cancer31,32, DNAm of BCL3, SLC1A5 and PPP1R15A were first
linked to health-related outcomes in our study. In light of the
known gene functions of BCL3 (pathogenesis of CVD and solid
tumours)33–35, SLC1A5 (a glutamine transporter in various types
of cancer development, progression and response to therapy)36

and PPP1R15A (neurological and CVD pathophysiology, as well
as obesity and insulin resistance in animal models)37–39, it
appears plausible that DNAm may play regulating roles in the
development or progression of the respective diseases, which
requires elucidation in future studies. This also applies to most of
the other genes known to be related to specific diseases whose
relationship to methylation-relevant outcomes were first disclosed
in our study, such as DNAm of SARS, VCAM1, KCNQ1OT1,
MIR19A, SEMA7A, BCL3, PPP1R15A and PDE9A for CVD,
DNAm of SQLE, MIR19A, MIR10A, SOCS3, CALR, BCL3
and SLC1A5 for lung cancer, and DNAm of ATL3, SHANK2
and PPP1R15A for neurological diseases. In addition, it is
known that the chromosomal region 11p15.5 contains clusters
of epigenetically regulated genes, for example, KCNQ1 and
KCNQ1OT1, which have been implicated in T2D26,27. We found

two mortality-related CpGs (cg07123182 and cg26963277) in
KCNQ1OT1 in 11p15.5. Of note, associations with prevalent T2D
and mortality were also observed in the current study for
cg23190089 in SLC22A18AS (on 11p15.4), a locus located
B198 kb downstream of cg26963277 in KCNQ1OT1. The
chromosome region 11p15.5/4, along with SLC1A5, SQLE and
SOCS3 methylation that were suggested to be involved in T2D in
both the current and previous studies5,25,40–42, therefore appear
to be attractive targets for diabetes investigation, and even for
CVD given the biological functions of these genes and their
methylation in CVD40,43 and also the well-known causal
relationship between diabetes and CVD. Similar to SQLE,
KCNQ1OT1 and SOCS3, which are involved in diabetes, CVD
and various cancers5,26,40,43–46, most identified genes are
characterized by their relevance to multiple diseases, making
them the most robust signals on an epigenome-wide scale, which
may explain the extremely strong association of the risk score
based on identified DNAm markers with all-cause mortality.

Compared with genetic variants related to longevity identified
by GWAS, which typically show very small effect sizes of single
SNPs, in particular in general population samples47,48, the effect
size of even single CpGs identified in the current EWAS were
substantial, with HRs Z1.17 or r0.83 per s.d. increase of
methylation, resulting in the strong overall prediction when
combining these CpGs in a risk score. To our knowledge, no
comparably strong prediction of mortality based on genetic data
has been identified, suggesting that epigenetic data might be more
informative for mortality prediction than genetic data.

The recently established epigenetic clock (DNAm age) has
received growing attention as an increasing number of studies
have uncovered it to be a proxy of biological ageing11–15 and thus
potentially providing a measure for assessing health and
mortality. Intriguingly, we targeted mortality-related DNAm
changes and did not find any overlap with previously established
CpGs that are used to determine the DNAm age11,12. Our
findings are in line with evidence, suggesting that DNAm
involved in ageing or health-related outcomes are mostly

Table 4 | Associations of the risk score with cancer and CVD mortality in the ESTHER and KORA study.

Outcome Study Mortality score* Ntotal Cases PY IRw HR (95% CI)

Model 1z Model 2y Model 3||

Cancer mortality ESTHER 0 199 8 2690.69 0.30 Ref. # Ref. # Ref. #
1 242 17 3144.50 0.54

2–5 426 31 5300.86 0.58 1.38 (0.82–2.34) 1.24 (0.72–2.11) 1.21 (0.68–2.15)
45 131 22 1348.99 1.63 4.11 (2.31–7.30) 3.12 (1.69–5.78) 2.57 (1.27–5.21)

KORA 0 487 3 2163.01 0.14 Ref. # Ref. # Ref. #
1 490 1 2147.91 0.05

2–5 722 16 3070.1 0.52 5.78 (1.93–17.31) 4.28 (1.39–13.13) 3.16 (1.01–9.85)
45 28 2 114.32 1.75 19.42 (3.56–106.06) 14.74 (2.6–83.69) 5.74 (0.84–39.42)

CVD mortality ESTHER 0 199 4 2690.69 0.15 Ref. # Ref. # Ref. #
1 242 9 3144.50 0.29

2–5 426 43 5300.86 0.81 3.69 (1.99–6.87) 3.41 (1.82–6.40) 4.00 (1.96–8.15)
45 131 25 1348.99 1.85 9.04 (4.62–17.70) 7.19 (3.54–14.62) 9.12 (3.89–21.39)

KORA 0 487 2 2163.01 0.09 Ref. # Ref. # Ref. #
1 490 2 2147.91 0.09

2–5 722 15 3070.1 0.49 5.23 (1.74–15.76) 3.67 (1.19–11.35) 4.89 (1.34–17.78)
45 28 3 114.32 2.62 28.5 (6.38–127.36) 19.18 (4.1–89.71) 25.00 (3.99–156.43)

CI, confidence interval; HR, hazard ratio; IR, incidence rate; PY, person-years; Ref., reference category.
*Score was based on methylation of 10 CpGs (cg01612140, cg05575921, cg06126421, cg08362785, cg10321156, cg14975410, cg19572487, cg23665802, cg24704287 and cg25983901) using their
respective first quartile values (cg08362785: using its highest quartile) among the ESTHER participants as the cutoff points to define aberrant methylation. Score 0–10 refer to simultaneously aberrant
methylation at 0–10 CpGs.
wIncidence rate per 100 person-years.
zModel 1: without adjustment.
yModel 2: adjusted for chronological age and sex.
||Model 3: similar to model 2, additionally adjusted for smoking status, body mass index, physical activity, alcohol consumption, systolic blood pressure, total cholesterol, hypertension and prevalent
cardiovascular disease, diabetes and cancer at baseline. # Score=0-1 used as the reference group.
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regulated by DNAm regions other than the established age-
related DNAm19–21. The difference could also plausibly result
from the fact that DNAm age was originally trained as precisely
as possible to track chronological age and might thus be more
indicative of natural ageing beyond the effect of disease, as
exemplified by the much stronger association of DNAm age with
mortality in oldest population (mean age 86.1 years)15 to whom
common chronic diseases, such as CVD and cancer, might not
continue to pose predominant risks49. Given characteristics of the
identified genes and of our study population (mean age 62 years)
that is at high-risk age for suffering from major diseases, the
currently identified DNAm regions might be more indicative
of disease-related outcomes and mortality. Only one previous

study has also determined genome-wide methylomic mortality
predictors, which were also distinct from the established ageing-
associated sites11,12 but also different from signatures discovered
in our study. A plausible explanation is that this study was
conducted in a very old population (mean age 90þ years), in
which causes of death might be distinct from those observed in
our study49.

Lack of gene expression data hindered exploration of the roles
of the identified DNAm sites in regulating the relevant gene
expression. Diseases associated with the identified genes were
determined based on a literature search. Whether and how
DNAm of those genes are involved in development or
progression of the described diseases needs to be elucidated by
future multidisciplinary research. For example, genetic factors
might potentially be involved in the observed methylation-related
mortality and the interplay between genetic factors and these
methylation markers warrants to be explored. In the analysis, we
did not exclude probes that might be affected by known SNPs
as annotated by ‘Infinium HD Methylation SNP List’
(http://support.illumina.com/array/array_kits/infinium_humanm
ethylation450_beadchip_kit/downloads.html). We later retrieved
data of 32 such SNPs for 24 identified CpGs in 581 ESTHER
participants of the validation set. Only one SNP-CpG pair (rs524-
cg03707168) showed a significant association. However, no
association was observed between rs524 and all-cause mortality
irrespective of controlling for DNAm of cg03707168, whereas the
strong association of cg03707168 with mortality did not change
when controlling for rs524. In addition, no interaction was
detected between rs524 and cg03707168 in relation to mortality.
Nevertheless, potential genetic variants, that is, methylation
quantitative trait loci for the identified candidates, should be
systematically assessed in further studies. Despite the overall large
size of the study population, sample size limitations restricted the
list of identified sites, which should be extended in future larger
longitudinal studies. In addition, the effect sizes (that is, average
methylation difference between survivors and deaths) of most
identified loci are relatively small as illustrated in Fig. 1. Plausible
reasons are that methylation levels were measured on average 8.2
years before dying and presumably stronger methylation
difference restricted to specific causes of death are expected to
be diluted in an analysis of all-cause mortality. Another limitation
is that DNAm was quantified in whole blood samples. Even
though we controlled for the effect of potential cell shift by
adjustment for leukocyte composition estimated according to an
established and commonly applied algorithm50, residual
confounding by leukocyte distribution cannot be ruled out.
However, this would not diminish the value of the identified
markers for mortality prediction, for which easy accessibility of
blood samples is a major advantage. Finally, although we included
a variety of covariates in the regression analyses, we cannot
exclude the possibility that the observed associations between the
identified methylation markers and mortality might be explained
to some extent by incompletely controlled or uncontrolled
confounding factors. For example, for smoking-related
candidates, the observed associations might be partially
confounded by imperfect controlling for smoking exposure or
by potential confounders related to smoking. Despite its
limitations, the prospective nature of the present study, the
inclusion of large representative samples of participants from the
general population, the long-term follow-up, the hypothesis-free
approach with independent internal and external validation, as
well as comprehensive adjustment for a variety of common risk
factors in data analyses, are major strengths of the current study,
which renders novel findings for future verification.

Our previous work using candidate gene approaches has
demonstrated the potential use of mortality-related DNAm
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Figure 3 | Kaplan–Meier estimates of survival by risk score in the

ESTHER study (N¼ 1,000). (a) Survival curves with respect to death

from any causes; (b) survival curves with respect to death from cancer;

(c) survival curves with respect to death from CVD. Plog-rank was derived

from log-rank test.
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markers, such as F2RL3 and AHRR, for lung cancer and CVD risk
prediction8,9. The clinical implications of other CpGs emerging
from the present study for diagnosis, prognosis or even treatment
of common diseases, in particular diabetes, CVD and cancer,
warrant exploration by future studies. The methylation-based
mortality risk score might be a useful tool for population
stratification in disease screening and intervention, and its
predictive value for ageing-related outcomes, such as frailty and
dementia, is worthwhile investigating in future research.

Methods
Study population and data collection. The EWAS and subsequent validation
were conducted in the ESTHER study, an ongoing population-based cohort study
conducted in Saarland, Germany. The ESTHER cohort, as previously described in
detail51, enroled 9,949 older adults (age 50–75 years) by their general practitioners
during routine health check-ups between 2000 and 2002. The participants
completed a standardized self-administered questionnaire and donated biological
samples (blood, stool and urine) during baseline enrolment. Comprehensive
medical data, such as the results of a physical assessment, medical diagnoses and
drug prescriptions were additionally obtained from the general practitioner. Deaths
during follow-up were identified through record linkage with population registries
in Saarland. Information on the major cause of death was obtained from death
certificates provided by the local health authorities and coded with ICD-10 codes.
Deaths from CVD and malignant invasive cancers, respectively, were defined by
ICD-10 codes I00-I99 and C00-C97 (excluding non-melanoma skin cancer (C44)).

Genome-wide DNAm measurements were performed in the baseline blood
samples of two subsets of the ESTHER participants. Subset-I (discovery panel)
consists of participants from a case–cohort study nested within 2,499 ESTHER
participants who were consecutively recruited between October 2000 and March
2001, and had sufficient DNA available. Of the 2,499 participants, 406 participants
who died during follow-up by March 2013 were the cases in the case–cohort design
and 548 participants were randomly selected as the subcohort irrespective of death
status during follow-up. The sampling fraction was thus 548/2,499¼ 22%. Subset-
II (validation panel) consists of 1,000 ESTHER participants who were recruited
between July and October 2000, and who were non-overlapping with the case–
cohort samples, among whom 231 deaths were ascertained during follow-up.

Replication in an independent cohort was performed in the KORA F4 study,
a population-based cohort consisting of 3,080 participants (age 32–81 years)
recruited between 2006 and 2008 from the region of Augsburg, Southern
Germany52,53. The vital status of KORA participants was ascertained through
population registries inside and outside the study area in December 2011. Causes of
death were determined according to death certificates from the Regional Health
Department and coded with ICD-9. A random baseline sample consisting of
1,727 participants were selected for methylation analysis, among whom 61
participants died.

All ESTHER and KORA F4 participants provided written informed consent.
The ESTHER study was approved by the ethics committees of the University of
Heidelberg and of the state medical board of Saarland, Germany. The KORA F4
study was approved by the Ethics Committee of the Bavarian Medical Association.

Methylation assessment. DNAm in whole blood was quantified using the Infi-
nium HumanMethylation450K BeadChip (Illumina, Inc, San Diego, CA, USA) in
both ESTHER and KORA F4. Details of methylation analysis in the ESTHER study
have been reported previously8,54. According to the manufacturer’s protocol, data
were normalized to internal controls provided by Illumina (Illumina
normalization). In data pre-processing, probes with detection P-value40.01, with
missing values410%, probes targeting the sex chromosomes, cross-reactive probes
and polymorphic CpGs55 were excluded, leaving 430,363 CpGs for genome-wide
screening. In the KORA study, data were pre-processed following the pipeline of
Lehne et al.56, probes with detection P-value (1� P-value computed from the
background model characterizing the probability that the target sequence signal
was distinguishable from the negative controls) 40.01 and missing values 45%
were removed, and quantile normalization was applied following stratification of
the probe categories into six types, based on probe type and colour channel, using
the R package limma57. Leukocyte composition was estimated using the algorithms
of Houseman et al.50 in both studies.

Statistical analysis. Discovery and validation of mortality-related CpGs. The
ESTHER study populations were described separately in the discovery and vali-
dation panel with respect to major sociodemographic characteristics, lifestyle fac-
tors and prevalent diseases at baseline. An epigenome-wide screening for mortality-
related CpGs was first carried out in the case–cohort samples, using weighted Cox
regression models that account for the case–cohort sampling design by Barlow
weighting (the inverse of the subcohort sampling fraction, 1/(548/2499))58,59. The
models with methylation b-values as explanatory variables were adjusted for age,
sex and batch effects. After correcting for multiple testing using the Benjamini–
Hochberg approach, CpGs that reached genome-wide significance (FDR o0.05)
were entered into the validation phase, in which the associations with mortality
were further analysed by multiple Cox regression adjusted for age, sex, batch
effects, leukocyte composition50, smoking status (never, former and current
smoker), body mass index (kg m� 2), physical activity (inactive, low, medium/
high), alcohol consumption (grams per day), systolic blood pressure (mmHg), total
cholesterol level (mg dL� 1), and prevalence of hypertension, CVD, diabetes and
cancer. CpGs with FDRo0.05 in the validation panel were deemed as mortality-
related loci. A flowchart of study design and data analysis is shown in
Supplementary Fig. 1.

Associations of risk factors with mortality-related CpGs. To explore risk factors
related to methylation associated with fatal endpoints, sociodemographic
characteristics, lifestyle factors and prevalent diseases at baseline were assessed in
relation to the methylation levels of the identified CpGs using mixed linear
regression models in the validation panel, with batch as random effect, methylation
b-value as the dependent variable and independent variables including age, sex,
smoking status (never, former and current smoker), body mass index

Table 5 | Associations of the risk score and epigenetic clock with all-cause and cause-specific mortality in the ESTHER study.

Outcome Mortality score*/epigenetic clockw HR (95% CI)

Model 1z Model 2y Model 3||

All-cause mortality 0 Ref. Ref. Ref.
1 2.04 (1.11–3.75) 2.02 (1.10–3.72) 2.15 (1.09–4.21)

2–5 3.18 (1.81–5.59) 3.07 (1.74–5.41) 3.31 (1.75–6.28)
45 7.64 (4.21–13.85) 7.18 (3.92–13.15) 6.96 (3.46–14.01)

Hannum Dage (per 5 years) 1.27 (1.10–1.46) 1.09 (0.94–1.27) 1.08 (0.92–1.27)

Cancer mortality 0–1 Ref. Ref. Ref.
2–5 1.24 (0.72–2.11) 1.19 (0.69–2.04) 1.16 (0.65–2.06)
45 3.12 (1.69–5.78) 2.89 (1.53–5.46) 2.33 (1.12–4.84)

Hannum Dage (per 5 years) 1.25 (0.98–1.59) 1.13 (0.87–1.46) 1.15 (0.88–1.51)

CVD mortality 0–1 Ref. Ref. Ref.
2–5 3.41 (1.82–6.40) 3.28 (1.74–6.18) 3.85 (1.87–7.89)
45 7.19 (3.54–14.62) 6.63 (3.19–13.78) 8.47 (3.54–20.28)

Hannum Dage (per 5 years) 1.34 (1.05–1.71) 1.12 (0.87–1.45) 1.12 (0.85–1.48)

CI, confidence interval; HR, hazard ratio; Ref., reference category.
*Score was based on methylation of 10 CpGs (cg01612140, cg05575921, cg06126421, cg08362785, cg10321156, cg14975410, cg19572487, cg23665802, cg24704287 and cg25983901) using their
respective first quartile values (cg08362785: using its highest quartile) among the ESTHER participants as the cutoff points to define aberrant methylation. Score 0–10 refer to simultaneously aberrant
methylation at 0–10 CpGs.
wThe epigenetic clock estimated by the difference between DNA methylation age calculated according to Hannum’s algorithm and chronological age.
zModel 1: adjusted for age and sex.
yModel 2: similar to model 1, additionally adjusted for the epigenetic clock/risk score.
||Model 3: similar to model 2, additionally adjusted for smoking status, body mass index, physical activity, alcohol consumption, systolic blood pressure, total cholesterol, hypertension and prevalent
cardiovascular disease, diabetes and cancer at baseline.
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(underweight/normal weight, overweight and obesity), physical activity (inactive,
low and medium/high), alcohol consumption (grams per day) and prevalent
hypertension, diabetes, CVD and cancer, again controlling for leukocyte
composition50. Multiple testing was again corrected for by the Benjamini–
Hochberg approach (FDRo0.05).

Mortality risk score. To develop a DNAm-based mortality risk score, we applied
the LASSO Cox regression60 with regularization parameter chosen by tenfold
cross-validation following the ‘one standard error’ rule61,62, selecting candidates
among the identified CpGs. The associations of the score with all-cause, CVD and
cancer mortality were assessed first in the validation subset of the ESTHER cohort
and then in the independent KORA cohort using multiple Cox regression models,
adjusted for the covariates listed above (Supplementary Fig. 1). All analyses were
then repeated in men and women separately. In addition, to compare the predictive
value of score with that of recently established methylomic predictors of ‘epigenetic
age acceleration’ (that is, Dage¼DNAm age� chronological age), we assessed the
associations of both score and Dage with all-cause mortality simultaneously.
DNAm age was calculated according to two commonly applied algorithms
introduced by Hannum et al.11 and Horvath et al.12.

The proportional hazards assumption was assessed by martingale-based
residuals63. No violations were detected. The LASSO regression analyses were
conducted using the R-package ‘glmnet’61. All other statistical analyses in the
ESTHER study were carried out in SAS 9.4 (SAS Institute, Cary, NC) and the
analyses in the KORA study were conducted in R (version 3.2.3).

Code availability. SAS codes for statistical analysis are available upon request.

Data availability. The data that support the findings of this study are available on
reasonable request from the corresponding author (Y.Z.). The data are not publicly
available due to restrictions of informed consent.
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